PIASx is a MEF2 SUMO E3 ligase that promotes postsynaptic dendritic morphogenesis.

نویسندگان

  • Aryaman Shalizi
  • Parizad M Bilimoria
  • Judith Stegmüller
  • Brice Gaudillière
  • Yue Yang
  • Ke Shuai
  • Azad Bonni
چکیده

Postsynaptic morphogenesis of dendrites is essential for the establishment of neural connectivity in the brain, but the mechanisms that govern postsynaptic dendritic differentiation remain poorly understood. Sumoylation of the transcription factor myocyte enhancer factor 2A (MEF2A) promotes the differentiation of postsynaptic granule neuron dendritic claws in the cerebellar cortex. Here, we identify the protein PIASx as a MEF2 SUMO E3 ligase that represses MEF2-dependent transcription in neurons. Gain-of-function and genetic knockdown experiments in rat cerebellar slices and in the postnatal cerebellum in vivo reveal that PIASx drives the differentiation of granule neuron dendritic claws in the cerebellar cortex. MEF2A knockdown suppresses PIASx-induced dendritic claw differentiation, and expression of sumoylated MEF2A reverses PIASx knockdown-induced loss of dendritic claws. These findings define the PIASx-MEF2 sumoylation signaling link as a key mechanism that orchestrates postsynaptic dendritic claw morphogenesis in the cerebellar cortex and suggest novel functions for SUMO E3 ligases in brain development and plasticity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PIASx acts as an Elk-1 coactivator by facilitating derepression.

The ETS-domain transcription factor Elk-1 is a MAP kinase-inducible transcriptional activator protein. However, in the basal state, its activity is repressed by SUMO-dependent histone deacetylase (HDAC) recruitment. Relief of this repression accompanies the activation process. Here, we demonstrate that PIASx(alpha) acts to facilitate this derepression process. Members of the PIAS family of prot...

متن کامل

SUMO-1 modification of MEF2A regulates its transcriptional activity

Myocyte enhancer factor 2 (MEF2) transcription factors are crucial regulators controlling muscle-specific and growth factor-inducible genes. Numerous studies have reported that the activity of these transcription factors is tightly modulated by posttranslational modifications such as activation by specific phosphorylation as well as repression by class II histone deacetylases (HDACs). We hypoth...

متن کامل

A novel role for the SUMO E3 ligase PIAS1 in cancer metastasis

Tumor metastasis contributes to the grave morbidity and mortality of cancer, but the mechanisms underlying tumor cell invasiveness and metastasis remain incompletely understood. Here, we report that expression of the SUMO E3 ligase PIAS1 suppresses TGFβ-induced activation of the matrix metalloproteinase MMP2 in human breast cancer cells. We also find that knockdown of endogenous PIAS1 or inhibi...

متن کامل

Necdin Promotes Ubiquitin-Dependent Degradation of PIAS1 SUMO E3 Ligase

Necdin, a pleiotropic protein that promotes differentiation and survival of mammalian neurons, is a member of MAGE (melanoma antigen) family proteins that share a highly conserved MAGE homology domain. Several MAGE proteins interact with ubiquitin E3 ligases and modulate their activities. However, it remains unknown whether MAGE family proteins interact with SUMO (small ubiquitin-like modifier)...

متن کامل

Role of RNF4 in the ubiquitination of Rta of Epstein-Barr virus.

Epstein-Barr virus (EBV) encodes a transcription factor, Rta, which is required to activate the transcription of EBV lytic genes. This study demonstrates that treating P3HR1 cells with a proteasome inhibitor, MG132, causes the accumulation of SUMO-Rta and promotes the expression of EA-D. GST pulldown and coimmunoprecipitation studies reveal that RNF4, a RING-domain-containing ubiquitin E3 ligas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 37  شماره 

صفحات  -

تاریخ انتشار 2007